Sarcoplasmic reticulum là gì

Sarcoplasmic reticulum là gì

Contents View Archive Information General Information         Directory Publish Authors instructions Home Journals index             Register / Login Mi perfil

Bạn đang xem: Sarcoplasmic reticulum là gì

Language: Español
References: 103
Page: 18-32
PDF size: 252.14 Kb.

Xem thêm: Luminance Là Gì – Cách Chỉnh Luminance Trong Photoshop

Key words:

Sarcoplasmic reticulum, Cardiomyocyte, Cardiac hypertrophy, Heart failure, Arrhythmias.

Xem thêm: Saturation Là Gì – định Nghĩa, Ví Dụ, Giải Thích


The sarcoplasmic reticulum (SR) constitutes the main intracellular calcium store in striated muscle and plays an important role in the regulation of excitation-contraction-coupling (ECC) and of intracellular calcium concentrations during contraction and relaxation. The regulation of ECC occurs due to the interaction among the main proteins of the SR that are the calcium release channel or ryanodine receptor, the Ca2+-ATPase, phospholamban and calsequestrin. Due to the importance of ECC in the physiopathology of a number of cardiac diseases, the role of the SR and its components has been widely investigated in some pathologies, specifically cardiac hypertrophy, heart failure, and hereditary arrhythmias. Therefore, the SR proteins constitute an area of research of great interest for the development of new genetic and pharmacologic therapies; from this derives the importance of understanding the function of the SR. This review analyzes the expression, structure, and function of the main SR proteins, their role on myocardial contraction and relaxation and in the changes that occur in cardiac pathologies.


Jorgensen AO, Kalnins VI, Zubrzycka E, MacLennan DH: Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures. J Cell Biol 1977; 74: 287-298.

Page E: Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol 1978; 235: C147-158.

Van Winkle WB, Entman ML: Comparative aspects of cardiac and skeletal muscle sarcoplasmic reticulum. Life Sci 1979; 25: 1189-1200.

Fabiato A, Fabiato F: Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 1979; 41: 473-484.

Fabiato A: Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 1983; 245: C1-14.

Franzini-Armstrong C, Protasi F, Tijskens P: The assembly of calcium release units in cardiac muscle. Ann N Y Acad Sci 2005; 1047: 76-85.

Michalak M, MacLennan DH: Assembly of the sarcoplasmic reticulum. Biosynthesis of the high affinity calcium binding protein in rat skeletal muscle cell cultures. J Biol Chem 1980; 255: 1327-1334.

Brandt NR, Brunschwig JP, Lattanzio FA: A functional identification of cardiac junctional sarcoplasmic reticulum. Biochem Biophys Res Commun 1985; 128: 739-745.

Jorgensen AO, Shen AC, Campbell KP: Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells. J Cell Biol 1985; 101: 257-268.

Wientzek M, Katz S: Isolation and characterization of purified sarcoplasmic reticulum membranes from isolated adult rat ventricular myocytes. J Mol Cell Cardiol 1991; 23: 1149-1163.

Martonosi AN, Pikula S: The network of calcium regulation in muscle. Acta Biochim Pol 2003; 50: 1-30.

Dhalla NS, Das PK, Sharma GP: Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 1978; 10: 363-385.

Schwartz K, Chassagne C, Boheler, KR: The molecular biology of heart failure. J Am Coll Cardiol 1993; 22: 30A-33A.

Arai M, Matsui H, Periasamy M: Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 1994; 74: 555-564.

Dillmann WH: Regulation of expression of cardiac sarcoplasmic reticulum proteins under pathophysiological conditions. Mol Cell Biochem 1996; 157: 125-128.

Hasenfuss G, Pieske B: Calcium cycling in congestive heart failure. J Mol Cell Cardiol 2002; 34: 951-969.

Alpert NR, Brosseau C, Federico A, Krenz M, Robbins J, Warshaw DM: Molecular mechanics of mouse cardiac myosin isoforms. Am J Physiol Heart Circ Physiol 2002; 283: H1446-1454.

Vannier C, Chevassus H, Vassort G: Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats. Cardiovasc Res 1996; 32: 580-586.

Palmer S, Kentish JC: Roles of Ca2+ and crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae. Circ Res 1998; 83: 179-186.

Baker AJ, Figueredo VM, Keung EC, Camacho SA: Ca2+ regulates the kinetics of tension development in intact cardiac muscle. Am J Physiol 1998; 275: H744-750.

Benitah JP, Gomez AM, Virsolvy A, Richard S: New perspectives on the key role of calcium in the progression of heart disease. J Muscle Res Cell Motil 2003; 24: 275-283.

Beard NA, Laver DR, Dulhunty AF: Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 2004; 85: 33-69.

Brittsan AG, Kranias EG: Phospholamban and cardiac contractile function. J Mol Cell Cardiol 2000; 32: 2131-2139.

Lehnart SE, Wehrens XH, Kushnir A, Marks AR: Cardiac ryanodine receptor function and regulation in heart disease. Ann N Y Acad Sci 2004; 1015: 144-159.

Marks AR, Tempst P, Hwang KS, Taubman MB, Inui M, Chadwick C, et al: Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA 1989; 86: 8683-8687.

Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH: Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 1990; 265: 13472-13483.

Takeshima H, Yamazawa T, Ikemoto T, Takekura H, Nishi M, Noda T, et al: Ca(2+)-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. EMBO J 1995; 14: 2999-3006.

Wagenknecht T, Samso M: Three-dimensional reconstruction of ryanodine receptors. Front Biosci 2002; 7: d1464-1474.

Franzini-Armstrong C, Jorgensen AO: Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 1994; 56: 509-534.

Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR: Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 1997; 272: 23389-23397.

Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, et al: Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 2001; 153: 699-708.

Dorn GW, 2nd, Force T: Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005; 115: 527-537.

Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, et al: PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 2000; 101: 365-376.

Wehrens XH, Marks AR: Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem Sci 2003; 28: 671-678.

Yano K, Zarain-Herzberg A: Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol Cell Biochem 1994; 135: 61-70.

Fryer MW, Stephenson DG: Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J Physiol 1996; 493(Pt 2): 357-370.

Ikemoto N, Ronjat M, Meszaros LG, Koshita M: Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 1989; 28: 6764-6771.

Kawasaki T, Kasai M: Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin. Biochem Biophys Res Commun 1994; 199: 1120-1127.

Beard NA, Sakowska MM, Dulhunty AF, Laver DR: Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys J 2002; 82: 310-320.

Ikemoto N, Antoniu B, Kang JJ, Meszaros LG, Ronjat M: Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 1991; 30: 5230-5237.

Schmidt AG, Kadambi VJ, Ball N, Sato Y, Walsh RA, Kranias EG, et al. Cardiac-specific overexpression of calsequestrin results in left ventricular hypertrophy, depressed force-frequency relation and pulsus alternans in vivo. J Mol Cell Cardiol 2000; 32: 1735-1744.

Knudson CM, Stang KK, Jorgensen AO, Campbell KP: Biochemical characterization of ultrastructural localization of a major junctional sarcoplasmic reticulum glycoprotein (triadin). J Biol Chem 1993; 268: 12637-12645.

Knudson CM, Stang KK, Moomaw CR, Slaughter CA, Campbell KP: Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). J Biol Chem 1993; 268: 12646-12654.

Jones LR, Zhang L, Sanborn K, Jorgensen AO, Kelley J: Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J Biol Chem 1995; 270: 30787-30796.

Kirchhefer U, Neumann J, Baba HA, Begrow F, Kobayashi YM, Reinke U, et al: Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J Biol Chem 2001; 276: 4142-4149.

Zhang L, Franzini-Armstrong C, Ramesh V, Jones LR: Structural alterations in cardiac calcium release units resulting from overexpression of junctin. J Mol Cell Cardiol 2001; 33: 233-247.

MacLennan DH, Abu-Abed M, Kang C: Structure-function relationships in Ca(2+) cycling proteins. J Mol Cell Cardiol 2002; 34: 897-918.

Korczak B, Zarain-Herzberg A, Brandl CJ, Ingles CJ, Green NM, MacLennan DH: Structure of the rabbit fast-twitch skeletal muscle Ca2+-ATPase gene. J Biol Chem 1988; 263: 4813-4819.

Zarain-Herzberg A, Alvarez-Fernandez G: Sarco(endo)plasmic reticulum Ca2+-ATPase-2 gene: structure and transcriptional regulation of the human gene. ScientificWorldJournal 2002; 2: 1469-1483.

Dode L, De Greef C, Mountian I, Attard M, Town MM, Casteels R, et al: Structure of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene. Promoter analysis and alternative splicing of the SERCA3 pre-mRNA. J Biol Chem 1998; 273: 13982-13994.

Lytton J, Zarain-Herzberg A, Periasamy M, MacLennan DH: Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem 1989; 264: 7059-7065.

Gelebart P, Martin V, Enouf J, Papp B: Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 2003; 303: 676-684.

Bobe R, Bredoux R, Corvazier E, Andersen JP, Clausen JD, Dode L, et al: Identification, expression, function, and localization of a novel (sixth) isoform of the human sarco/endoplasmic reticulum Ca2+ATPase 3 gene. J Biol Chem 2004; 279: 24297-24306.

MacLennan DH, Rice WJ, Green NM: The mechanism of Ca2+ transport by sarco(endo) plasmic reticulum Ca2+-ATPases. J Biol Chem 1997; 272: 28815-28818.

MacLennan DH, Kranias EG: Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 2003; 4: 566-577.

Bers DM: Cardiac excitation-contraction coupling. Nature 2002; 415: 198-205.

Shannon TR, Bers DM: Integrated Ca2+ management in cardiac myocytes. Ann N Y Acad Sci 2004; 1015: 28-38.

Kamishima T, Quayle JM: Ca2+-induced Ca2+ release in cardiac and smooth muscle cells. Biochem Soc Trans 2003; 31: 943-946.

Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gomez AM, et al: ‘Ca(2+)-induced Ca(2+) entry’ or how the L-type Ca(2+) channel remodels its own signalling pathway in cardiac cells. Prog Biophys Mol Biol 2006; 90: 118-135.

Yano M, Ikeda Y, Matsuzaki M: Altered intracellular Ca2+ handling in heart failure. J Clin Invest 2005; 115: 556-564.

Braunwald E, Bristow MR: Congestive heart failure: fifty years of progress. Circulation 2000; 102: IV14-23.

Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, et al: Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 1997; 100: 2315-2324.

Miyata S, Minobe W, Bristow MR, Leinwand LA: Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 2000; 86: 386-390.

Morano I, Hadicke K, Haase H, Bohm M, Erdmann E, Schaub MC: Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. J Mol Cell Cardiol 1997; 29: 1177-1187.

Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA: Myosin heavy chain gene expression in human heart failure. J Clin Invest 1997; 100: 2362-2370.

Pagani ED, Alousi AA, Grant AM, Older TM, Dziuban SW Jr, Allen PD: Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 1988; 63: 380-385.

Alpert NR, Mulieri LA, Litten RZ: Functional significance of altered myosin adenosine triphosphatase activity in enlarged hearts. Am J Cardiol 1979; 44: 946-953.

Houser SR, Margulies KB: Is depressed myocyte contractility centrally involved in heart failure? Circ Res 2003; 92: 350-358.

Beuckelmann DJ, Nabauer M, Erdmann E: Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992; 85: 1046-1055.

Grossman W, Jones D, McLaurin LP: Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975; 56: 56-64.

Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, et al: Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 1992; 86: 426-430.

Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, et al: Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000; 275: 15239-15245.

Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 2004; 94: 110-118.

Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, et al: Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 1997; 276: 800-806.

Zarain-Herzberg A, Rupp H, Elimban V, Dhalla NS: Modification of sarcoplasmic reticulum gene expression in pressure overload cardiac hypertrophy by etomoxir. Faseb J 1996; 10: 1303-1309.

Takizawa T, Arai M, Yoguchi A, Tomaru K, Kurabayashi M, Nagai R: Transcription of the SERCA2 gene is decreased in pressure-overloaded hearts: A study using in vivo direct gene transfer into living myocardium. J Mol Cell Cardiol 1999; 31: 2167-2174.

Bers DM, Eisner DA, Valdivia HH: Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 2003; 93: 487-490.

Lehnart SE, Schillinger W, Pieske B, Prestle J, Just H, Hasenfuss G: Sarcoplasmic reticulum proteins in heart failure. Ann NY Acad Sci 1998; 853: 220-230.

Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, et al: Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995; 92: 778-784.

Bers DM: Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol 2004; 37: 417-429.

Lindner M, Erdmann E, Beuckelmann DJ: Calcium content of the sarcoplasmic reticulum in isolated ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol 1998; 30: 743-749.

Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, et al: Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 1994; 77: 513-523.

Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al: Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000; 97: 793-798.

Del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK, et al: Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 2001; 104: 1424-1429.

Sato Y, Kiriazis H, Yatani A, Schmidt AG, Hahn H, Ferguson DG, et al: Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J Biol Chem 2001; 276: 9392-9399.

Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, et al: Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 1999; 99: 313-322.

Iwanaga Y, Hoshijima M, Gu Y, Iwatate M, Dieterle T, Ikeda Y, et al: Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 2004; 113: 727-736.

Farr MA, Basson CT: Sparking the failing heart. N Engl J Med 2004; 351: 185-187.

Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, et al: Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001; 103: 485-490.

Scoote M, Williams AJ: The cardiac ryanodine receptor (calcium release channel): emerging role in heart failure and arrhythmia pathogenesis. Cardiovasc Res 2002; 56: 359-372.

January CT, Riddle JM: Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 1989; 64: 977-990.

Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, et al. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 2000; 46: 376-392.

Tomaselli GF, Marban E: Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 1999; 42: 270-283.

Pak PH, Nuss HB, Tunin RS, Kaab S, Tomaselli GF, Marban E, et al: Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol 1997; 30: 576-584.

Pogwizd SM, Bers DM: Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 2004; 14: 61-66.

Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME: Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 1992; 86: 1872-1887.

Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, et al: FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003; 113: 829-840.

Schlotthauer K, Bers DM: Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 2000; 87: 774-780.

Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al: Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002; 106: 69-74.

Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001; 103: 196-200.

Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, et al: Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 2001; 10: 189-194.

Kontula K, Laitinen PJ, Lehtonen A, Toivonen L, Viitasalo M, Swan H: Catecholaminergic polymorphic ventricular tachycardia: recent mechanistic insights. Cardiovasc Res 2005; 67: 379-387.

Tiso N, Salamon M, Bagattin A, Danieli GA, Argenton F, Bortolussi M: The binding of the RyR2 calcium channel to its gating protein FKBP12.6 is oppositely affected by ARVD2 and VTSIP mutations. Biochem Biophys Res Commun 2002; 299: 594-598.

Chuyên mục: Hỏi Đáp

=> Xem thêm: Tin tức tổng hợp tại Chobball

Comments are closed.